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Particle-size segregation can have a significant feedback on the bulk motion of
granular avalanches when the larger grains experience greater resistance to motion
than the fine grains. When such segregation-mobility feedback effects occur the flow
may form digitate lobate fingers or spontaneously self-channelize to form lateral levees
that enhance run-out distance. This is particularly important in geophysical mass flows,
such as pyroclastic currents, snow avalanches and debris flows, where run-out distance
is of crucial importance in hazards assessment. A model for finger formation in a
bidisperse granular avalanche is developed by coupling a depth-averaged description
of the preferential transport of large particles towards the front with an established
avalanche model. The coupling is achieved through a concentration-dependent friction
coefficient, which results in a system of non-strictly hyperbolic equations. We compute
numerical solutions to the flow of a bidisperse mixture of small mobile particles and
larger more resistive grains down an inclined chute. The numerical results demonstrate
that our model is able to describe the formation of a front rich in large particles, the
instability of this front and the subsequent evolution of elongated fingers bounded by
large-rich lateral levees, as observed in small-scale laboratory experiments. However,
our numerical results are grid dependent, with the number of fingers increasing as
the numerical resolution is increased. We investigate this pathology by examining
the linear stability of a steady uniform flow, which shows that arbitrarily small
wavelength perturbations grow exponentially quickly. Furthermore, we find that on
a curve in parameter space the growth rate is unbounded above as the wavelength
of perturbations is decreased and so the system of equations on this curve is ill-
posed. This indicates that the model captures the physical mechanisms that drive the
instability, but additional dissipation mechanisms, such as those considered in the
realm of flow rheology, are required to set the length scale of the fingers that develop.
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1. Introduction
Flows of granular materials, such as rockfalls, pyroclastic density currents, debris

flows and snow slab avalanches, occur frequently in the natural environment and can
be enormously destructive. The ability to predict the distance to which these flows
travel is crucial for the mitigation of their threat. Accurate hazard assessment and
planning strategies for minimizing the impact of these events can be greatly enhanced
by physical models that are able to reproduce key features of these flows. While
there has been significant progress in our understanding of the motion of granular
materials, existing models are unable to describe all aspects of these hazardous flows.
In particular, experimental observations of fingering instabilities (Pouliquen, Delour
& Savage 1997; Pouliquen & Vallance 1999; Phillips et al. 2006; Goujon, Dalloz-
Dubrujeaud & Thomas 2007, see also figure 1) and field studies (e.g. Pierson 1986;
Iverson & Vallance 2001; Branney & Kokelaar 2002; Iverson 2003; Lube et al. 2007)
have shown particle-size segregation significantly affects the behaviour of natural
granular flows, particularly in the formation of levees. However, there have been
very few attempts to include particle-size segregation in avalanche models.

Particle-size segregation, where a mixture of grains of differing sizes separate into
distinct classes during flow, can occur through several mechanisms (see e.g. Cooke,
Stephens & Bridgwater 1976; Ottino & Khakhar 2000). For dense granular avalanches,
where the solids volume fraction is close to the random close packing fraction and
where enduring particle contacts are the primary mechanism for particle interactions
(Forterre & Pouliquen 2008), kinetic sieving and squeeze expulsion (Middleton 1970;
Savage & Lun 1988) dominate. This results in a segregation of large particles upwards
(i.e. against gravity) towards the free surface of the avalanching material, while smaller
particles accumulate towards the base of the flow.

The first model of kinetic sieving and squeeze expulsion was developed by Savage
& Lun (1988) from a statistical argument on the distribution of void space within
a shearing granular assemblage. This model was able to predict steady-state size
distributions for simple chute flows of bidisperse granular materials. Dolgunin &
Ukolov (1995) used an ad hoc phenomenological argument to obtain a similar model
that included a diffusive term to account for the remixing that occurs in faster
flows. Recently, Gray & Thornton (2005), Thornton, Gray & Hogg (2006), Gray
& Chugunov (2006) and Gray & Ancey (2011) derived a model of particle-size
segregation using the techniques of mixture theory (see e.g. Truesdell 1984; Morland
1992). The structure of the resulting equation, which describes the evolution of the
small particle concentration φ(x, y, z, t) ∈ [0, 1], is similar to those obtained by Savage
& Lun (1988) and Dolgunin & Ukolov (1995). Experimental investigations of particle-
size segregation in dense, slow granular flows on inclined chutes (Savage & Lun
1988; Vallance & Savage 2000; Wiederseiner et al. 2011) and in an annular shear cell
(Golick & Daniels 2009; May et al. 2010) have shown that vertical size segregation
is very efficient and that zones of nearly 100 % small and large particles are formed,
which are often separated by a diffuse transition. Wiederseiner et al. (2011) obtained
high-spatial-resolution observations of particle-size segregation during the flow down
an inclined chute and demonstrated the evolving particle distribution predicted by
the Gray & Chugunov (2006) model is consistent with the experimental observations.
Vallance & Savage (2000) investigated the effect of adding a background fluid and
showed that the density of the fluid has a large effect on segregation, completely
suppressing the segregation in the case where fluid and particle densities are matched.
The effect of the interstitial fluid has been incorporated into a segregation model that
includes an inviscid interstitial fluid (Thornton et al. 2006).
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FIGURE 1. A sequence of overhead views of the laboratory experiment in which a bidisperse
mixture of spherical (white) glass ballotini (75–150 µm) and irregular (brown) carborundum
grains (315–350 µm) is released onto a plane inclined at ζ = 27◦. The chute surface is
roughened with a monolayer of (turquoise) glass ballotini (750–1000 µm). Particle-size
segregation and velocity shear through the avalanche preferentially transports large grains
towards the flow front, where they may be overrun, but rise to the surface again by size
segregation. The accumulation of the larger more resistive grains at the flow front (a) leads
to a lateral instability (b) and the front degenerates into a series of distinct fingers (c). The
images are approximately 57 cm × 30 cm. A movie showing the time-dependent evolution of
this flow is available at http://dx.doi.org/10.1017/jfm.2012.348.

http://dx.doi.org/10.1017/jfm.2012.348
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Observations of fingering instabilities in dense flows of bidisperse granular mixtures
on inclined chutes demonstrate the crucial role of particle-size segregation (Pouliquen
et al. 1997; Pouliquen & Vallance 1999; Félix & Thomas 2004; Goujon et al. 2007).
Figures 1 and 2 show an example generated by the release of a finite mass of
material from a reservoir onto an inclined plane. The bidisperse mixture is composed
of (white) spherical glass ballotini (75–150 µm) and larger (brown) irregularly shaped
carborundum particles (315–355 µm). When this bidisperse mixture flows down an
inclined plane, roughened with (turquoise) glass ballotini (750–1000 µm), kinetic
sieving and squeeze expulsion cause the large particles to segregate to the free
surface. Velocity shear through the depth of the avalanche ensures that the large grains
experience a greater velocity and they are preferentially transported towards the flow
front. Here they may be overrun, but can rise to the surface again by size segregation
and accumulate there (e.g. Pouliquen et al. 1997; Pouliquen & Vallance 1999; Gray
& Ancey 2009) as can be seen in figure 1(a,b). If the large grains experience a
greater frictional resistance to motion, which is achieved in experiments by using large
irregular and small spherical grains, the front is observed to be unstable (Pouliquen
et al. 1997; Pouliquen & Vallance 1999). Lateral variations in the proportion of large
grains near the front cause inhomogeneities in the mobility of the boundary. In regions
where there is a greater proportion of resistive large grains than the average, the
mobility of the front is reduced and these large-rich regions lag behind the more
mobile regions. Thus, a non-uniform front forms, composed of large-rich clefts of
retarded mobility which trail behind and separate fingers of relatively more mobile
material (Pouliquen & Vallance 1999). The front degenerates into a series of distinct
fingers. Once the fingers have developed, additional large grains that reach the flow
front are advected to the side to form static large-rich lateral levees, which confine the
more mobile material within the channel.

The experimental observations are not precisely reproducible, with the position and
length of the fingers varying within experimental runs in which the flow parameters
are held constant, indicating a sensitivity of the evolution of the flow to small changes
in the initial conditions (such as the initial particle-size distribution) and complicated
interactions between the developing fingers. The accumulation of static regions of
large material can cause deviation in the flow direction as shown in figure 2(b), and
as the flow wanes, material can be seen draining off the raised lateral levees, exposing
fines-rich material lining the interior of the channels as shown in figure 2(c). Fingering
is an example of a ‘segregation-mobility feedback effect’ (Gray & Kokelaar 2010a,b)
and the self-channelization of the flow that it causes has a significant effect on the
run-out distance. This is therefore an essential consideration for hazard assessment in
larger-scale geophysical mass flows, where the same process occurs (e.g Pierson 1986;
Iverson & Vallance 2001; Johnson et al. 2012).

Motivated by the experimental observations of the segregation-induced break-up of
the uniform flow front, Pouliquen & Vallance (1999) developed a phenomenological
model of a bidisperse granular avalanche, which we discuss in detail in § 2. The
Pouliquen & Vallance (1999) model adopts depth-averaged equations to describe the
conservation of mass and momentum in the avalanche, and considers the slow-flow
limit where inertial contributions to the momentum balance are negligible. In addition,
the distribution of large and small particles is assumed to be spatially and temporally
invariant in a frame of reference moving with the steadily propagating front; the
imposed concentration field is simply advected with the flow. The influence of the
inhomogeneous particle size distribution on the flow is modelled by a concentration-
dependent friction coefficient that enables the resistance experienced by the avalanche
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FIGURE 2. A sequence of oblique head-on views of the laboratory experiment shown in
figure 1 in which a bidisperse mixture of spherical (white) ballotini and irregular (brown)
carborundum grains moves down an inclined plane towards the camera. Large grains that are
transported to the flow front are advected to the side to form lateral levees (a) that confine
more mobile fines-rich material in a channel. The accumulation of static regions of large
material can cause deviation in the flow direction (b), as seen here. In addition, as the flow
wanes, material can be seen draining off the raised lateral levees, exposing fines-rich material
lining the interior of the channels (c). A movie showing the time-dependent evolution of this
flow is available at http://dx.doi.org/10.1017/jfm.2012.348.

http://dx.doi.org/10.1017/jfm.2012.348
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to vary from a high value in regions where there is a high proportion of the frictional
large particles to lower values in small-particle-rich regions. Pouliquen & Vallance
(1999) performed a linear stability analysis of a propagating front and showed that
monodisperse avalanches are linearly stable to small perturbations while bidisperse
mixtures of resistive large particles and less frictional small particles are linearly
unstable to transverse perturbations.

The simplifying assumptions adopted in the development of the Pouliquen &
Vallance (1999) model render it inappropriate for a description of bidisperse granular
avalanches from initiation to final deposition. In particular, the evolution of the
particle-size distribution and the effect of segregation on the mobility of the
avalanching material cannot be accounted for in their model. In this work we propose
a simple model for fingering in dense, bidisperse granular avalanches that adopts a
depth-averaged framework for both the conservation of mass and momentum within
the avalanching layer (e.g. Gray, Tai & Noelle 2003), as well as for the evolving
particle distribution (Gray & Kokelaar 2010a,b). This approach, which was suggested
by Gray & Kokelaar (2010a,b), has the advantage that only two-dimensional fields
need to be computed, whilst still being able to reproduce the bulk transport processes
of the full three-dimensional equations. The segregation-mobility feedback can then be
modelled through a concentration-dependent friction coefficient in the depth-averaged
momentum balance, as in Pouliquen & Vallance (1999), although there are many
other ways to couple the equations (see Gray & Kokelaar 2010a,b). This is not the
only possible approach. For instance the bulk flow could also be coupled directly
with the three-dimensional segregation equations by computing the bulk flow using
the recent rheological models of Jop, Forterre & Pouliquen (2006) and Rognon et al.
(2007), or alternatively by reconstructing the three-dimensional velocity field from the
depth-averaged avalanche model by using assumed velocity profiles with depth. This
latter approach was adopted by Gray & Ancey (2009) to construct exact solutions
in a situation where there is no feedback between the particle segregation and bulk
dynamics.

Depth-averaged (shallow-water) models have been shown to be an effective tool
in modelling many geophysical mass flows, including snow avalanches (Cui, Gray &
Jóhannesson 2007; Gruber & Bartelt 2007), dense pyroclastic flows (Mangeney et al.
2007; Doyle et al. 2008), debris flows (Iverson 1997; Denlinger & Iverson 2001),
block and ash flows (Pitman et al. 2003; Dalbey et al. 2008) and lahars (Williams,
Stinton & Sheridan 2008). In addition to these geological applications, depth-averaged
models have been applied to describe small-scale laboratory experiments of dense
granular flows containing obstacles (Gray et al. 2003), wedges (Gray et al. 2003;
Hákonardóttir & Hogg 2005; Gray & Cui 2007) and contractions (Vreman et al.
2007), as well as flows on inclined planes that exhibit hydraulic jumps (Johnson &
Gray 2011), which all show quantitative agreement between theory and experiment.
The depth-averaged equations of mass and momentum conservation are obtained by
integrating the three-dimensional governing equations through the avalanche depth. By
exploiting the shallowness of the flow an asymptotic expansion of the depth-integrated
equations can be performed, and the leading order balance is retained (see e.g. Savage
& Hutter 1989; Gray, Wieland & Hutter 1999; Gray et al. 2003). In the resulting
two-dimensional depth-averaged system of equations the gradients of the deviatoric
stress tensor do not appear and the normal stress is hydrostatic, to leading order, so no
constitutive theory is required.

This paper is organized as follows. In § 2 we discuss the simple model of bidisperse
granular avalanches proposed by Pouliquen & Vallance (1999). Our model represents a
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significant extension of this model, in particular through a description of the evolution
of the particle size distribution. In § 3 we derive the depth-averaged segregation
equation from a fully three-dimensional model of particle-size segregation (Gray &
Thornton 2005). The depth-averaged equation we obtain describes the preferential
transport of large particles towards the flow front and in § 4 we couple this ‘large-
particle transport equation’ to a depth-averaged model for dense granular avalanches.
Numerical solutions of the depth-averaged model corresponding to a lock–release
on an inclined chute are obtained in § 5, where we demonstrate the coupled depth-
averaged model is able to describe the accumulation of large particles at the flow
front and the break up of the front into a series of fingers that look similar to
those observed in experiments. However, we are unable to obtain a fully grid-resolved
numerical solution and a linear stability analysis is performed in § 6 to investigate the
reasons for this.

2. Pouliquen and Vallance’s model
Pouliquen & Vallance (1999) proposed a phenomenological model in an attempt

to describe the mechanism initiating the instability of the propagating front of a
bidisperse granular avalanche. The Pouliquen & Vallance (1999) model adopts a
depth-averaged approach, exploiting the shallowness of the avalanching material in
comparison to its extent, to propose a system of conservation equations for the
evolution in time, t, and the spatial variation of the avalanche thickness, h, the
depth-averaged velocity, u, and the depth-averaged concentration of small particles,
φ, which can be written as

∂h

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)= 0, (2.1)

tan ζ − µ u

|u| −
∂h

∂x
= 0, (2.2)

−µ v

|u| −
∂h

∂y
= 0, (2.3)

∂φ

∂t
+ u

∂φ

∂x
+ v ∂φ

∂y
= 0, (2.4)

where ζ is the inclination of the slope with respect to the horizontal, µ is the basal
friction coefficient, x and y are the downslope and cross-slope coordinates, respectively,
and u = (u, v) denotes the depth-averaged velocity in the downslope and cross-slope
directions (figure 3).

The depth-averaged mass balance equation (2.1) assumes that the densities of the
large and small particles are equal and the avalanche is incompressible. While it is
known that dilatation occurs when a granular packing is sheared (Reynolds 1885),
the assumption of incompressibility during motion is frequently adopted for dense
granular flows where observations show there is little change in volume during the
motion (see e.g. Savage & Hutter 1989). In the depth-averaged momentum balance
equations in the downslope and cross-slope directions, given by (2.2) and (2.3),
respectively, the inertial terms are neglected in view of the low flow velocities
observed in laboratory experiments. Furthermore, the earth pressure coefficient is
assumed to remain constant at unity (see e.g. Savage & Hutter 1989; Gray et al.
2003). Pouliquen & Vallance (1999) do not describe fully the dynamics of particle-size
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FIGURE 3. Sketch of a bidisperse granular avalanche. The granular material flows down a
chute inclined at an angle ζ to the horizontal. A coordinate system is taken with the x-axis
aligned with the downslope direction, the y-axis is aligned with the cross-slope direction and
the z-axis is normal to the chute surface which has topography z= b(x, y, t). The avalanching
material has depth h(x, y, t)= s(x, y, t) − b(x, y, t), where z= s(x, y, t) denotes the surface of
the avalanche, and propagates with a downslope velocity u(x, y, z, t). We assume that particle-
size segregation completely separates the particle classes, with large particles overlying small
and separated by an interface at a height η(x, y, t) = hφ. The shear profile through the
avalanche depth then preferentially transports the large particles to the flow front where
they may be overrun, rise by segregation, recirculate and accumulate.

segregation, but simply enforce advection of an imposed particle distribution at the
velocity of the bulk flow (2.4). The initial particle concentration profile is chosen to
reflect the expected distribution of large and small particles and is then simply carried
along with the avalanche, but does not evolve further during the flow. In particular,
there is no additional accumulation of large material at the flow front. Note that,
for consistency with the depth-averaged theory for particle-size segregation derived
by Gray & Kokelaar (2010a,b), we have expressed the Pouliquen & Vallance (1999)
model in terms of the depth-averaged concentration of small particles φ, rather than
for the concentration of large particles (which here is given by 1 − φ) as originally
formulated by Pouliquen & Vallance (1999).

Currently, little is known about the frictional properties of bidisperse granular
mixtures. Pouliquen & Vallance (1999) propose a bidisperse friction coefficient, which
is a concentration-weighted average of the friction coefficients of the constituent
particles in a pure phase. The most simple averaging assumes a linear weighting
of the pure phase friction coefficients with the depth-averaged concentration,

µ= (1− φ)µL + φµS (2.5)

where µL and µS denote the friction coefficients for pure phases of large and
small particles, respectively. By adopting a friction coefficient of this form, the
friction experienced by the bidisperse avalanche is coupled to the particle distribution.
Pouliquen & Vallance (1999) propose that the friction coefficient of each phase can be
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described by a rough bed friction law (Pouliquen 1999a) of the form

µN (h, |u|)= tan ζN
1 + (tan ζN

2 − tan ζN
1 ) exp

(−β√gh3/2

L N |u|
)
, N = L, S, (2.6)

where β = 0.136 is an empirical constant and we use superscripts N = L, S to denote
a quantity that is associated with large and small particles, respectively. The minimum
angle for steady uniform flow, ζN

1 , the maximum angle for steady uniform flow,
ζN

2 , and the length scale, L N , are constants for a given granular material which
can be determined experimentally (see e.g. Pouliquen 1999a). By adopting friction
coefficients of the form (2.6) a total of six parameters are required to describe the
material properties of the two constituent particle classes. Pouliquen & Vallance (1999)
assume ζ S

1 < ζ
L
1 and ζ S

2 < ζ
L
2 so that the friction experienced by the large, irregular

grains is larger than that experienced by the small, spherical grains. While the length
scales L S and L L may differ for each particle class, we assume throughout that
L S =L L =L for simplicity.

The simple advection equation for the concentration of small particles (2.4) is not
sufficient to describe large-particle transport which leads to the formation and growth
of a large-rich front. However, Pouliquen & Vallance (1999) consider a situation in
which a large-rich flow front has already formed and enforce an initial condition with
a depth-averaged concentration distribution of the form

φ(x, y, 0)= 1
2

(
1− tanh

(
x+ xL

D

))
, (2.7)

which is simply advected with the flow. Here xL is the length of the large-rich front
region and D is the length scale of the transition region between the large-rich front
and the pure-fine region behind. Since the front is comprised entirely of large particles,
the shape of the steadily propagating granular front can be determined from the
balance of the gravitational force in the downslope direction which drives the motion
with the frictional resistance opposing the motion (Pouliquen 1999b).

Pouliquen & Vallance (1999) investigate the linear stability of their model for
monodisperse and bidisperse granular flows to small cross-slope perturbations. The
linear stability analysis suggests that monodisperse fronts are stable, while bidisperse
flows are unstable if µL > µS, i.e. if the large material at the flow front experiences
greater frictional resistance than the small grains. Furthermore, the linear stability
analysis found that, for linearly unstable flows, the growth rate is an increasing
function of the (transverse) wavenumber. Therefore, the system of equations proposed
by Pouliquen & Vallance (1999) is unable to predict the wavelength of the fingers.

3. The two-dimensional depth-averaged segregation equation
While the phenomenological model proposed by Pouliquen & Vallance (1999)

provides a basis for modelling bidisperse granular avalanches it cannot fully describe
the evolution of the avalanche from the initiation of the flow to the final deposition
of the material. In particular, as the spatial distribution of the constituent particle
classes is imposed as an initial condition and simply advected with the bulk flow, the
segregation-mobility feedback between the evolving particle-size distribution and the
bulk flow cannot be fully described.

Models of particle-size segregation in granular mixtures within a shearing flow
have been derived using information entropy theory (Savage & Lun 1988), ad-hoc
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methods (Dolgunin & Ukolov 1995) and mixtures theory (Gray & Thornton 2005;
Thornton et al. 2006; Gray & Chugunov 2006; Gray & Ancey 2011). The resulting
‘segregation equations’ have been shown to be capable of reproducing several features
of the flow of bidisperse granular mixtures (Gray & Ancey 2009; May et al. 2010;
Wiederseiner et al. 2011). However, to use the three-dimensional segregation equation
to describe particle transport within the avalanche we require knowledge of the
velocity profile in the interior of the avalanche. Therefore, it is not possible to utilize
the three-dimensional segregation equation in conjunction with the commonly used
depth-averaged models of avalanche motion (e.g. Savage & Hutter 1989; Gray et al.
1999) unless we make additional assumptions on the form of the velocity profile
within the avalanche.

Recently, the two-dimensional segregation equation has been depth-averaged (Gray
& Kokelaar 2010a,b), allowing a description of particle-size segregation to be
placed alongside depth-averaged models of granular avalanches. The depth-averaged
segregation equation provides a simplified description of the complicated evolving
particle-size distributions, which are obtained as solutions of the two- and three-
dimensional segregation equation (Gray & Kokelaar 2010a,b). Furthermore, by
coupling the particle concentration, whose evolution is described by the depth-
averaged segregation equation, to the depth-averaged equations of mass and
momentum conservation (Savage & Hutter 1989; Gray et al. 1999), models of the
segregation-mobility feedback can be formed (Gray & Kokelaar 2010a,b).

In order to model the fingering instabilities in bidisperse granular avalanches we
generalize the depth-averaged segregation theory of Gray & Kokelaar (2010a,b) which
is derived for two-dimensional flows, to fully three-dimensional flows. The most
general form of the dimensionless segregation equation (e.g. Dolgunin & Ukolov
1995; Gray & Chugunov 2006) for the volume fraction of small particles φ is

∂φ

∂t
+ ∂

∂x
(φu)+ ∂

∂y
(φv)+ ∂

∂z
(φw)− ∂

∂z
(Srφ(1− φ))= ∂

∂z

(
Dr
∂φ

∂z

)
, (3.1)

where x and y are coordinates in the downslope and cross-slope directions, respectively,
and z is normal to the chute. The bulk velocity u has components (u, v,w) in the
downslope, cross-slope and normal directions, respectively, and the dimensionless
parameters Sr and Dr are the (dimensionless) segregation rate and diffusivity,
respectively (Gray & Thornton 2005; Gray & Chugunov 2006). The volume fraction
of large particles is given by 1 − φ. At the free surface, z = s(x, y, t), and base,
z = b(x, y, t), we enforce kinematic boundary conditions (e.g. Savage & Hutter 1989;
Gray et al. 1999) of the form

∂s

∂t
+ us

∂s

∂x
+ vs

∂s

∂y
− ws = 0 on z= s(x, y, t), (3.2)

∂b

∂t
+ ub

∂b

∂x
+ vb

∂b

∂y
− wb = 0 on z= b(x, y, t), (3.3)

where the subscripts s and b on the velocity components denote evaluation at the
surface and base of the flow, respectively. In addition, there is no flux of either the
large or small particles across the upper free surface or the lower base of the flow,

Srφ(1− φ)+ Dr
∂φ

∂z
= 0 at z= s, b. (3.4)
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The segregation equation (3.1) can be integrated through the avalanche depth by
using Leibniz’ integral theorem (Abramowitz & Stegun 1970) to give

∂

∂t
(hφ)+ ∂

∂x
(hφu)+ ∂

∂y
(hφv)=

[
φ

(
∂z

∂t
+ u

∂z

∂x
+ v ∂z

∂y
− w

)]s

b

+
[

Srφ(1− φ)+ Dr
∂φ

∂z

]s

b

, (3.5)

where the depth-averaged small-particle concentration φ and the depth-averaged small-
particle fluxes in the downslope and cross-slope directions, φu and φv, respectively,
are defined as

φ = 1
h

∫ s

b
φ dz, φu= 1

h

∫ s

b
φu dz, φv = 1

h

∫ s

b
φv dz, (3.6)

and h(x, y, z, t) = s − b. On application of the kinematic boundary conditions (3.2)
and (3.3) and the no-flux conditions (3.4) at the free surface and at the base of the
avalanche, the depth-averaged segregation equation (3.5) reduces to

∂

∂t
(hφ)+ ∂

∂x
(hφu)+ ∂

∂y
(hφv)= 0. (3.7)

In order to close the model expressions are required to relate the depth-averaged
concentration fluxes to the depth-averaged flow velocity. While it is possible to
construct a hierarchy of models by assuming a variety of concentration and velocity
profiles through the avalanche depth, here we propose simple physically motivated
profiles of the concentration and avalanche velocity, following Gray & Kokelaar
(2010a,b). The two constituents are assumed to segregate rapidly in the avalanche
into fully separated inversely graded layers, as has been observed in stratification
pattern experiments (Gray & Hutter 1997; Gray & Ancey 2009). The concentration of
small particles within the avalanching layer is then taken to be

φ(x, y, z, t)=
{

0, l< z< s,
1, b< z< l,

(3.8)

where z = l(x, y, t) is the height of the interface between the small-particle phase and
the overlying large-particle phase. Furthermore, following Gray & Kokelaar (2010a,b),
we assume that the velocity profile within the avalanching layer is linear with depth,
with the greatest velocities achieved at the surface of the flow. We therefore take
velocity profiles of the form

u= αu+ 2(1− α)u
(

z− b

h

)
,

v = αv + 2(1− α)v
(

z− b

h

)
.

 (3.9)

These profiles ensure the depth-averaged downslope and cross-slope velocities are u
and v, respectively. The parameter α ∈ [0, 1] allows the velocity profile to vary from
plug flow (for α = 1) to simple shear with no slip at the base (α = 0). For 0 < α < 1
the velocity profiles are linear through the depth of the avalanche with a non-zero slip
velocity at the basal boundary. While more complicated, nonlinear velocity profiles can
be incorporated, the linear profiles capture the essential features of shear through the
avalanching layer and the possibility of basal slip.
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Evaluating the integrals (3.6) with the inversely graded concentration profile
(3.8) and velocity profile (3.9) the depth-averaged concentration and depth-averaged
concentration fluxes are

hφ = η,
hφu= huφ − (1− α)huφ(1− φ),
hφv = hvφ − (1− α)hvφ(1− φ),

 (3.10)

where η(x, y, t) = l − b is the thickness of the small-particle layer. With these
expressions for the depth-averaged concentration and depth-averaged concentration
fluxes, the depth-averaged segregation equation (3.7) can be written as

∂η

∂t
+ ∂

∂x

(
ηu− (1− α)ηu

(
1− η

h

))
+ ∂

∂y

(
ηv − (1− α)ηv

(
1− η

h

))
= 0, (3.11)

which is the two-dimensional equivalent of the depth-averaged segregation equation
derived by Gray & Kokelaar (2010a,b). They refer to (3.11) as the ‘large-particle
transport equation’ because it describes the preferential transport of large particles,
which lie in the higher, faster-moving regions of the flow, towards the flow front.

Gray & Kokelaar (2010a,b) examined the properties of (3.11) for unidirectional
downslope flows, using a prescribed velocity field and avalanche thickness. The
depth-averaged theory provides a simple representation of the complicated evolution
of the particle size distribution, yet it is capable of reproducing many features of
unidirectional flow solutions to the hyperbolic segregation equation (3.1) with Dr ≡ 0
and no variation in the cross-slope (y) direction (Gray, Shearer & Thornton 2006;
Shearer, Gray & Thornton 2008). In particular, once inversely graded fully segregated
layers have developed, the motion of the interface as determined by solution of the
two-dimensional hyperbolic theory is reproduced precisely by the one-dimensional
depth-averaged equation, provided that the interface does not break (Gray & Kokelaar
2010a,b). When the interface does break, the breaking size-segregation wave predicted
in the two-dimensional hyperbolic theory (Thornton & Gray 2008; McIntyre et al.
2008; Gray & Ancey 2009) is represented by a concentration shock in the depth-
averaged theory (Gray & Kokelaar 2010a,b). The speed of the shock is identical to the
propagation speed of the breaking size-segregation wave and the net transport of large
particles remains identical to that which occurs in the hyperbolic segregation model.
The recirculation of large particles that are overridden by the advancing flow front and
are lifted back towards the free surface by particle-size segregation is a crucial process
in the development of leveed fingers (Pouliquen & Vallance 1999). In the non-depth-
averaged models this is represented as a breaking size-segregation wave (Thornton &
Gray 2008; McIntyre et al. 2008; Gray & Ancey 2009; Johnson et al. 2012), that picks
up slowly moving large grains near the base of the flow and transports them to higher
faster-moving near-surface regions, to create a recirculation loop. In the depth-averaged
formulation (Gray & Kokelaar 2010a,b) the breaking wave is replaced by a shock,
which instantaneously lifts large particles to the high faster-moving surface layers
(Gray & Kokelaar 2010a,b). The depth-averaged equation (3.11) is therefore capable
of describing the net transport of large particles towards an avalanche front and their
subsequent accumulation there.
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4. A fully coupled theory for segregation-mobility feedback
We model the segregation-mobility feedback in bidisperse granular avalanches

through a coupling of the large-particle transport equation (3.11) to a depth-averaged
model for the bulk flow (e.g. Gray et al. 2003).

4.1. Governing equations
Dimensionless variables are introduced through application of standard scalings
appropriate for depth-averaged equations describing dense granular flows (Savage &
Hutter 1989; Gray et al. 1999),

(h′, η′)= H(h, η), (x′, y′)= L(x, y), (u′, v′)=√gL(u, v), t′ =√L/gt, (4.1)

where the primed variables are dimensional and g denotes the constant of gravitational
acceleration. With these scalings the dimensionless system of governing equations
describing the evolution of the avalanche thickness, h, the depth-averaged bulk
velocity, u = (u, v), and the height of the interface between small particles and
overlying large particles, η = hφ, consists of four depth-averaged conservation
equations,

∂h

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)= 0, (4.2)

∂

∂t
(hu)+ ∂

∂x
(hu2)+ ∂

∂y
(hu v)+ ∂

∂x

(
1
2
εh2 cos ζ

)
= hS(x), (4.3)

∂

∂t
(hv)+ ∂

∂x
(hu v)+ ∂

∂y
(hv2)+ ∂

∂y

(
1
2
εh2 cos ζ

)
= hS(y), (4.4)

∂η

∂t
+ ∂

∂x

(
ηu− (1− α)ηu

(
1− η

h

))
+ ∂

∂y

(
ηv − (1− α)ηv

(
1− η

h

))
= 0, (4.5)

where the source terms S(x) and S(y) consist of the components of gravitational
acceleration, basal friction and local basal topography,

S(x) = sin ζ − µ u

|u| cos ζ − ε ∂b

∂x
cos ζ, (4.6)

S(y) =−µ v

|u| cos ζ − ε ∂b

∂y
cos ζ. (4.7)

The basal friction is of Coulomb type, with the frictional shear stress proportional
to the normal stress (the coefficient of proportionality being the friction coefficient
µ), and opposes the direction of motion. Throughout our analysis we will consider
flows on planar inclines, thus we take b(x, y, t) ≡ 0. The dimensionless aspect ratio
ε = H/L is the ratio of a typical avalanche thickness H to a typical length L. In the
derivation of the equations for the conservation of mass and momentum (4.2)–(4.4)
it is assumed that the densities of each of the particle classes are identical, and the
mixture is incompressible and has a lithostatic pressure through its depth (Savage &
Hutter 1989; Gray et al. 1999), which are consistent with the assumptions on which
the large-particle transport equation (4.5) has been derived (Gray & Kokelaar 2010a,b).
While the bulk flow equations (4.2)–(4.4) are relatively simple, they have been applied
successfully to model complex granular flows in which both normal and oblique
shock waves develop as a monodisperse avalanche flows past an obstacle or through
a constriction (Gray et al. 2003; Hákonardóttir & Hogg 2005; Gray & Cui 2007;
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Vreman et al. 2007; Cui et al. 2007) as well as the flow after the impingement of a jet
on an inclined plane (Johnson & Gray 2011). In the equations for the conservation of
momentum (4.3) and (4.4) it has been implicitly assumed that u2 ≡ u2, which is only
strictly true in the case where u is independent of z. This assumption can be relaxed
by the introduction of ‘shape factors’ (see e.g Savage & Hutter 1989), but for most
observed vertical velocity profiles (see e.g. GDR MiDi 2004) these shape factors are
close to unity, so for simplicity will not be included here. In addition, earth pressure
coefficients (e.g. Savage & Hutter 1989; Gray et al. 1999; Iverson & Denlinger 2001),
which model differences in the normal stress components, can be included, but are
neglected here.

The system of conservation laws (4.2)–(4.5) are closely related to the
system (2.1)–(2.4) proposed by Pouliquen & Vallance (1999). In particular,
the equation of mass conservation is identical, while the momentum balance
equations (2.2) and (2.3) are obtained from (4.3) and (4.4), respectively, by neglecting
the inertial terms in comparison to the pressure gradient and source terms, and taking
a planar basal topography b(x, y, t)= 0. The large-particle transport equation (4.5) also
reduces to the advection equation (2.4) when there is no shear (α = 1, indicating
no preferential transport of large particles), or when there is a pure phase of
either all large or all small particles. The system studied by Pouliquen & Vallance
(1999) therefore represents a particular limit of the depth-averaged system (4.2)–(4.5)
in which the avalanche propagation is sufficiently slow that inertial terms can be
neglected and there is no preferential transport of large particles towards the front of
the avalanche. This corresponds to the situation in which all of the large particles have
already accumulated in a pure phase at the flow front. The depth-averaged system of
equations we propose (4.2)–(4.5) allows a description of the evolution of the particle
size distribution from a bidisperse, inversely graded avalanche to an avalanche with a
large-rich front, and we can assess the effects of this evolving size distribution on the
mobility of the avalanche.

4.2. Friction model for a bidisperse mixture
The Pouliquen (1999a) friction coefficient µN for constituent N = L, S, defined
in (2.6), is a function of the avalanche depth, h, and the depth-averaged velocity,
u. The use of the depth-averaged velocity rather than the basal avalanche velocity
implies that it parameterizes, or approximates, some aspects of the rheology within the
granular layer, as well as the friction experienced at the base (Forterre & Pouliquen
2008). This suggests that the effective bed friction for a dense bidisperse granular
flow, which has segregated into layers composed of distinct grain classes, does not
simply depend on the properties of the grains in contact with the bed. Rather the
friction law should encompass properties of the overlying grains. This was recognized
by Pouliquen & Vallance (1999) in their study of bidisperse granular avalanches. In
the absence of a composite rheology or an empirical bed friction for a bidisperse
mixture, Pouliquen & Vallance (1999) proposed a simple effective bed friction, which
is a concentration-weighted average of the friction coefficients of each particle class,
given by (2.5). This can be recast in terms of the height of the interface, η, and the
depth of the avalanche, h, as

µ=
(

1− η
h

)
µL + η

h
µS. (4.8)

Such concentration-dependent friction in the source terms represents a relatively weak
coupling of the model, since the derivative terms in the system of equations (4.2)–(4.5)
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are not affected. It nevertheless provides a simple way of increasing the frictional
resistance to motion as the proportion of irregular large particles increases. Alternative
forms of the friction law are possible. For instance, the basal friction might also
reasonably be parameterized by switching between the large and small particle laws
by a weighting based on the concentration of particles at the base of the avalanche,
rather than the depth-averaged concentration. For the sharp particle size distribution
assumed in (3.8) this would imply the friction at the bed would be the small-particle
friction, unless there were no small particles, and it would discontinuously jump
to large-particle friction. We have implemented this version of the friction law in
numerical computations, with a rapid variation between the friction coefficients of the
grain classes adopted for numerical convenience, but it has little qualitative effect on
the fingering instability that develops. This is perhaps not surprising, since the friction
law (4.8) provides for a discontinuous change in the friction coefficient between the
pure phases and mixed regions, and between neighbouring regions of purely large and
purely small grains, as the concentration changes discontinuously in the hyperbolic
theory at shocks in the interface height.

Following Pouliquen & Vallance (1999) we model the frictional interaction of each
of the constituent particle classes with the basal surface using an empirical friction law
for dense granular flows on a rough bed (Pouliquen 1999a), as given in dimensional
variables in (2.6). On application of the scalings (4.1), the friction coefficient of a
single particle species can be written as

µN (h, |u|)= tan ζN
1 +

(
tan ζN

2 − tan ζN
1

)
exp

(−β√εh3/2

L N |u|
)
, N = L, S, (4.9)

where the length scale over which the friction coefficient varies has been scaled
on the avalanche depth (i.e. the dimensional length scale L ′ = HL ). The frictional
length scale is a material property of the grains and bed, and typically L ∈ [0.05, 2]
(Pouliquen 1999a). We recall β = 0.136 is an empirical dimensionless constant. The
bidisperse friction coefficient, obtained by combining (4.8) and (4.9), is a function of
the local avalanche depth, flow speed and concentration of small particles φ = η/h.

The empirical friction model (4.9) introduces five dimensionless material parameters
that describe the frictional properties of the mixture. The friction angles ζ L

1 , ζ S
1

must be exceeded in order to maintain a steady flow of pure phases of large
and small particles, respectively, the friction angles ζ L

2 , ζ S
2 are the maximum

angles for which a steady flow of each constituent exists and the length scale
L characterizes the variation of the friction coefficient, which we have assumed is
identical for each of the particle classes. In addition to these five material parameters,
a further three dimensionless controlling parameters can be identified in the governing
equations (4.2)–(4.5) which we recognize as the inclination angle of the slope, ζ , the
typical aspect ratio of the avalanche, ε = H/L� 1, and the parameter α ∈ [0, 1] that
determines the linear shear profile through the avalanche depth and the extent of basal
slip. Furthermore, on specifying a velocity boundary condition, a dimensionless Froude
number can be constructed, as discussed below.

The system of equations (4.2)–(4.9) reduces to the system of equations for a
monodisperse granular avalanche when η ≡ 0 (representing an avalanche composed
entirely of the large-particle class) and when η ≡ h (for an avalanche of the small-
particle class).
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4.3. Steady, fully developed flow
A simple solution of the governing equations, corresponding to a steady, fully
developed flowing layer can be determined by seeking a solution in which all fields
are spatially and temporally invariant. In view of the scalings (4.1) the steady, fully
developed solution can be written as

h(x, y, t)= h0 = 1, u(x, y, t)= u0, v(x, y, t)= 0, η(x, y, t)= η0, (4.10)

where u0 > 0 and η0 ∈ [0, 1] are constants to be determined.
On substitution into the downslope component of the momentum conservation

equation (4.3) we find that the basal friction on the avalanche must balance the
gravitational acceleration in order for a steady flow to be maintained,

µ(1, u0, η0)= tan ζ. (4.11)

This can be written as

µL
0 + (µS

0 − µL
0)η0 = tan ζ, (4.12)

where

µN
0 = µN (1, u0)= tan ζN

1 +
(
tan ζN

2 − tan ζN
1

)
exp

(−β√ε
L u0

)
for N = L, S.

(4.13)

For a prescribed concentration of large particles, which in the depth-averaged theory
corresponds to a specified interface height η0, the depth-averaged velocity of the
avalanching layer is then given by

u0 =−γ / logχ, (4.14)

where γ = β√ε/L and

χ = tan ζ − (1− η0) tan ζ L
1 − η0 tan ζ S

1

(1− η0)(tan ζ L
2 − tan ζ L

1 )+ η0(tan ζ S
2 − tan ζ S

1 )
. (4.15)

In order to obtain a physically appropriate avalanche velocity we must have 0< χ < 1,
from which we determine the range of inclinations angles for which the steady flow is
possible,

(1− η0) tan ζ L
1 + η0 tan ζ S

1 < tan ζ < (1− η0) tan ζ L
2 + η0 tan ζ S

2 . (4.16)

4.4. Characteristic wave speeds
The coupling of the transport equation (4.5) to the equations for conservation of mass
and momentum (4.2)–(4.4) through the source terms and the empirical relations for
the friction coefficients (4.9) do not involve gradients of the field variables. Therefore,
the system of equations (4.2)–(4.5) is a quasi-linear, non-strictly hyperbolic system and
characteristic surfaces along which information is propagated can be constructed.

Following Courant & Hilbert (1962) we find three characteristic surfaces. Two of
these are rays (i.e. lines in the three-dimensional xyt space) defined by

Q0 : dx = u dt, dy= v dt, (4.17)
Q1 : dx = (1− (1− α)(1− 2η/h))u dt, dy= (1− (1− α)(1− 2η/h))v dt. (4.18)

The ray Q0 propagates information with the bulk flow, while Q1 propagates
information at the velocity of the interface between the large and small grains.
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We note the characteristics Q0 and Q1 coincide for α ≡ 1 or when η/h = 1/2. The
third characteristic surface is the usual characteristic conoid which is obtained for the
shallow-water equations (Courant & Hilbert 1962; Weiyan 1992) and is defined by the
Monge equation (Courant & Hilbert 1962)

Qs : (dx− u dt)2+ (dy− v dt)2 = hε cos ζ (dt)2, (4.19)

which corresponds to the propagation of surface gravity waves, whose speed is given
by cs =√hε cos ζ and which spread isotropically in a frame of reference moving with
the bulk flow velocity. As the characteristic conoid Qs is identical to the characteristic
conoid of the shallow-water equations we can define a Froude number

Fr = |u|√
hε cos ζ

, (4.20)

as the ratio of the speed of the bulk flow to the speed of surface gravity waves. The
flow is subcritical if Fr < 1 since the line x = y = 0 remains within the characteristic
conoid for all t > 0, and is supercritical if Fr > 1 since the ray conoid does not
intersect the t-axis for t > 0. Note that the Froude number is spatially and temporally
varying, so the flow can transition between subcritical and supercritical states during
the evolution of the flow.

While the characteristic ray Q0 remains within the characteristic conoid Qs, the ray
Q1 can be within the conoid, intersect the conoid or be outside of the conoid. These
possibilities can be observed by considering the characteristic surfaces corresponding
to the steady, fully developed flow described above. The characteristic surfaces for the
steady, fully developed flow given by h= 1, u= u0, v = 0, η = η0 are

Q0 : dx= u0 dt, dy= 0,
Q1 : dx= (1− (1− α)(1− 2η0))u0 dt, dy= 0,
Qs : (dx− u0 dt)2+ (dy)2 = ε cos ζ (dt)2 .

 (4.21)

We take parameters ζ = 31◦, ζ L
1 = 27◦, ζ L

2 = 37◦, ζ S
1 = 20◦, ζ S

2 = 30◦ (corresponding to
a mixture for which the large material experiences greater frictional resistance than the
small material), L = 0.5 and take ε = 0.1. By varying the proportion of large material,
through the choice of the steady interface height η0, we obtain different steady flow
velocities and the topology of the characteristic surfaces changes, as shown in figure 4,
where local characteristic ray surfaces (i.e. the curves Qi|t=1 corresponding to the
intersection of the characteristic surfaces and the plane t = 1) in the xy-plane are
shown for various cases. The topology of the characteristic surfaces is determined by
the speed of information propagation on the interface between the large and small
particles in comparison to the speed of surface gravity waves. A critical velocity, uc,
can be identified as the velocity at which the characteristic ray Q1 coincides with the
ray cone Qs and is given by

uc =
√
ε cos ζ

|(1− α)(1− 2η0)| . (4.22)

For steady flow velocities 0 < u0 < uc the characteristic ray Q1 remains within the
characteristic ray cone Qs. In contrast, if u0 > uc > 0 the characteristic ray Q1 lies
outside the ray cone Qs. Note that

u0

uc
= |(1− α)(1− 2η0)| u0√

ε cos ζ
6 Fr, (4.23)
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FIGURE 4. Characteristic ray surfaces, Qs (solid line), Q0 (·) and Q1 (×), on the xy-plane
at t = 1 for steady, fully developed flows on a plane inclined at an angle ζ = 31◦, for
material with friction parameters ζ L

1 = 27◦, ζ L
2 = 37◦, ζ S

1 = 20◦, ζ S
2 = 30◦, L = 0.5, and

with ε = 0.1 and α = 0: (a) η0 = 0.25, u0 = 0.140 and uc = 0.590 resulting in a subcritical
flow with the characteristic rays lying within the ray cone; (b) η0 = 0.6, u0 = 0.370 and
uc = 1.46 resulting in a supercritical flow with the characteristic rays lying within the ray
cone; (c) η0 = 0.75, u0 = 0.882 and uc = 0.590 resulting in a supercritical flow with the
characteristic ray corresponding to the speed of the interface lying outside the ray cone.

(with equality for η0 = 0 and η0 = 1 with α = 0, i.e. for monodisperse flows with a
simple shear velocity profile) so the ray Q1 can only lie outside of the ray cone Qs

when the flow is supercritical (Fr > 1).

5. Two-dimensional numerical solutions for a propagating front
To test whether the system of equations (4.2)–(4.9) is able to generate fingers we

perform numerical computations to simulate the laboratory experiments of Pouliquen
& Vallance (1999). As the quasi-linear system of equations (4.2)–(4.5) is (non-
strictly) hyperbolic we employ the non-oscillatory central scheme of Jiang & Tadmor
(1998). This is a high-resolution shock-capturing scheme, which has been employed
extensively to compute numerical solutions of shallow granular flows. For example,
Gray et al. (2003) use this scheme to compute the dry granular free-surface flow
past a pyramid and Gray & Cui (2007) adapted the scheme, employing body-fitted
coordinates, to study granular avalanches impinging on an oblique wedge.

We calculate two-dimensional solutions of the depth-averaged systems of equations
representing the flow of material out of a hopper with a fixed height onto an inclined
plane. A computational domain 0 6 x 6 Lx and 0 6 y 6 Ly is employed, with periodic
boundary conditions at y= 0 and y= Ly. For initial conditions we impose

h(x, y, 0)= 0, u(x, y, 0)= 0, v(x, y, 0)= 0, η(x, y, 0)= 0, (5.1)

representing a chute that is free of material. At x = 0, inflow conditions are prescribed
with

h(0, y, t)= 1− e−t/λ, u(0, y, t)= u0,

v(0, y, t)= 0, η(0, y, t)= η0 + ηp(y),

}
(5.2)

where u0 and η0 are the depth-averaged flow velocity and interface height, respectively,
for a steady, fully developed flow which are related by (4.14). Note, for numerical
convenience we allow the flow depth to gradually attain the steady value h = 1, and
introduce a time scale λ to characterize this evolution. The long time evolution of the
numerical solutions we obtain are insensitive to the choice of λ and we take λ = 2
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ζ S
1 = 20◦ ζ S

2 = 30◦ ζ L
1 = 27◦ ζ L

2 = 37◦

ζ = 21.5◦ L = 0.5 α = 0 γ = 1.0
ε = 0.1 u0 = 0.37822 η0 = 0.9 Fr = 1.23994
Nx = 500 Ny = 500 CFL = 0.4 Limiter θ = 1

TABLE 1. Material parameters adopted in the numerical computations with values of the
depth-averaged downslope velocity u0 and interface height η0, which are enforced at the
inflow boundary, the corresponding Froude number Fr , the number of computational grid
points, Nx and Ny, in the downslope and cross-slope directions, respectively, the CFL
number adopted in the computations, and the limiter of Jiang & Tadmor (1998) θ .

throughout. The inflow conditions (5.2) are appropriate for supercritical flows at x = 0,
and the increase of the flow depth to the steady value ensures the flow at the inflow
boundary is always supercritical. The height of the interface between the small and
large particles at the inflow boundary is perturbed from the steady value η0 by a
perturbation of the form

ηp(y)= 10−5 × sin
(

2πy

Ly

)
, (5.3)

to introduce a cross-slope spatial variation. The numerical domain is taken to be
sufficiently long to allow our computations to be completed before the front of flowing
material approaches the boundary at x= Lx so no outflow conditions are required.

Examples of the numerical solutions we obtain are shown in figures 5–7 where
contours of the concentration of small particles, φ = η/h, the magnitude of the depth-
averaged velocity, |u| =

√
u2 + v2, and the height of the layer, h, respectively, are

plotted at four times. The material parameters adopted in the numerical computations,
together with the computational parameters employed, are given in table 1.

The numerical solutions (figures 5–7) demonstrate the development of lobate fingers
during the evolution of the flow. At early times the material propagates down the slope
maintaining a uniform front (figures 5a, 6a and 7a). The flow front is predominately
composed of the large material, with a sharp increase in the depth-averaged volume
fraction of small material occurring behind the front. Small perturbations to the
uniform front become apparent as the material propagates downslope, with the
perturbations most clearly seen in the small particle concentration (figure 5b) and
the velocity (figure 6b) fields. Note the wavelength of the perturbations is markedly
different from the wavelength of the perturbation introduced at the inflow boundary.
In those regions where the local concentration of small particles is increased, the
downslope velocity is increased resulting in the formation of elongated fines-rich
fingers separated by relatively slow moving regions that are enriched in the large
material (see figures 5c and 6c). At later times there is a complicated interaction
between the fingers with splitting and cannibalization events evident (see figures 5d
and 6d). We note that these events are not visible in the height field (figure 7d) as
there is little variation in the height of fines-rich fingers and the large-rich regions
separating them.

While the fingers that are developed during the numerical computations appear to
have a well-defined and consistent wavelength (figures 5–7), the wavelength obtained
is dependent on the number of grid-points used in the computations. In figure 8 we
show the contours of the depth-averaged concentration of small particles, φ, at time
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FIGURE 5. Contours of the depth-averaged concentration of small particles, φ = η/h, as a
function of (x, y) at four instances of time, t = 30, 78, 120 and 195. White regions are grain
free. At the inflow boundary, x = 0, the concentration φ = 0.9. (a) At early times the material
propagates downslope, maintaining a uniform flow front. (b) The uniform flow front is
unstable and perturbations develop across the front. (c) The small perturbations develop into
a series of distinct fingers of small-rich material separated by large-rich regions. (d) At later
times, fingers interact strongly through splitting and cannibalization. A movie showing the
time-dependent simulation of this flow is available at http://dx.doi.org/10.1017/jfm.2012.348.

http://dx.doi.org/10.1017/jfm.2012.348
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FIGURE 6. Contours of the magnitude of the depth-averaged velocity, |u| = (u2 + v2)
1/2

, as a
function of (x, y) at four instances of time, t = 30, 78, 120 and 195. White regions are grain
free. At the inflow boundary, x = 0, the downslope velocity evolves rapidly to the steady
velocity u0 and the cross-slope velocity v = 0. (a) At early times the uniform flow front
propagates downslope. (b) The instability of the front causes perturbations to the velocity
field in the neighbourhood of the front. (c,d) As elongated fingers develop, the velocity of
fines-rich material in the channels is enhanced, while the coarse-rich material separating the
fingers is retarded. A movie showing the time-dependent simulation of this flow is available at
http://dx.doi.org/10.1017/jfm.2012.348.

http://dx.doi.org/10.1017/jfm.2012.348
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FIGURE 7. Contours of the depth of the avalanching layer, h, as a function of (x, y)
at four instances of time, t = 30, 78, 120 and 195. White regions are grain free. At the
inflow boundary, x = 0, the depth h = 1. (a) At early times the material propagates
downslope, maintaining a uniform steep flow front. (b) The uniform flow front is unstable
and perturbations develop across the front. (c,d) The small perturbations are enhanced and
the front develops into a series of lobate protrusions. A movie showing the time-dependent
simulation of this flow is available at http://dx.doi.org/10.1017/jfm.2012.348.

http://dx.doi.org/10.1017/jfm.2012.348
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FIGURE 8. Contours of the depth-averaged concentration of small particles, φ = η/h, as
a function of downslope, x, and cross-slope, y, position, at time t = 90. Three different
sized computational grids (with Nx = Ny = N) are taken: (a) N = 500, (b) N = 1000 and
(c) N = 2000. At the inflow boundary, x= 0, the concentration φ = 0.9.

t = 90 that are obtained from numerical computations which employ different numbers
of grid points. The number of fines-rich fingers increases as the number of grid
points increases, with the fingers becoming narrower (figure 8). As the fingers become
narrower we observe more interaction between the fingers, with numerous splitting and
cannibalization events (figure 8c). As the solutions we compute are sensitive to the
number of grid points adopted in the computational scheme the numerical solutions
are not able to reproduce fully the experimental observations.

The numerical computations demonstrate that the depth-averaged system of
equations (4.2)–(4.5) can describe the formation of fingers following an instability
of the front of the avalanche. Furthermore, the complicated interaction of fingers,
once formed, can also be captured in the numerical solutions. This suggests that the
system of governing equations contains sufficient physics to describe the initiation
of the fingering instability and the early stages of the evolution of the fingers.
However, our numerical integration of the system of equations (4.2)–(4.5) cannot
produce numerically resolved fingers with a well-defined wavelength. Indeed, on
refining the grid on which solutions are computed, a larger number of narrower
fingers are produced. While the experimental observations show that the width of
fingers are sensitive to the grain-size distribution released, the wavelength of fingers in
the numerical computations are determined by the effective diffusion of the numerical
scheme, with smaller diffusion at high spatial resolution giving higher-wavelength
fingers. Therefore, the length scale of the fingers cannot be predicted from the
numerical solutions.

6. Linear stability analysis of steady uniform flow
The numerical simulations show that the system (4.2)–(4.5) has the potential to

describe finger formation through segregation-mobility feedback effects, but there
is still some physics missing from the model. This is because the numerical
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diffusion, which changes with grid resolution, determines the finger wavelength in
the simulations. We suspect that there is a short wavelength Hadamard instability
(Joseph & Saut 1990; Gray 1999), i.e. the system is ill-posed at least in some flow
conditions. In order to get a precise result about the ill-posedness of the system, we
focus on the problem of steady uniform flow, rather than proceeding to analyse the
growth rates of the finger wavelengths at the front, which one might otherwise do. The
two problems are not unrelated, since a propagating flow front has a region of steady
uniform flow behind it. Therefore, if the steady uniform flow is ill-posed, it follows
that the propagating flow front will be ill-posed as well.

6.1. Linearized governing equations for small perturbations

Small perturbations are introduced to the steady flow (4.10),

h(x, y, t) = 1+ h1(x, y, t), u(x, y, t)= u0 + u1(x, y, t),
v(x, y, t) = v1(x, y, t), η(x, y, t)= η0 + η1(x, y, t),

}
(6.1)

with |h1| � h0, |u1| � u0, |v1| � u0 and |η1| � η0. The governing equations are
linearized in the small perturbations and we obtain a linear system of partial
differential equations governing the evolution of the small perturbations,

∂h1

∂t
+ u0

∂h1

∂x
+ ∂u1

∂x
+ ∂v1

∂y
= 0,

∂u1

∂t
+ u0

∂u1

∂x
+ ε cos ζ

∂h1

∂x
=−cos ζ [µhh1 + µuu1 + µηη1],

∂v1

∂t
+ u0

∂v1

∂x
+ ε cos ζ

∂h1

∂y
=−sin ζ

v1

u0
,

∂η1

∂t
+ [1− (1− α)(1− 2η0)]u0

∂η1

∂x
+ [1− (1− α)(1− η0)]η0

∂u1

∂x

+ [1− (1− α)(1− η0)]η0
∂v1

∂y
− (1− α)u0η0

2 ∂h1

∂x
= 0.


(6.2)

The frictional interaction between the flowing layer and the stationary bed enters the
linearized equations through derivatives of the friction coefficients evaluated for the
steady solution,

µh = ∂µ

∂h

∣∣∣∣
0

= (µL
0 − µS

0)η0 + µL
h(1− η0)+ µS

hη0,

µu = ∂µ

∂u

∣∣∣∣
0

= µL
u(1− η0)+ µS

uη0,

µη = ∂µ

∂η

∣∣∣∣
0

=−(µL
0 − µS

0),


(6.3)

where

µN
h =

∂µN

∂h

∣∣∣∣
0

=−3
2
(tan ζN

2 − tan ζN
1 )

γ e−γ /u0

u0
,

µN
u =

∂µN

∂u

∣∣∣∣
0

= (tan ζN
2 − tan ζN

1 )
γ e−γ /u0

u0
2 ,

 for N = L, S, (6.4)
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and µN
0 is given by the empirical friction law (4.13). For the simple layered steady

state which is perturbed, we have ∂µN /∂v|0 ≡ 0, but we note this may not be the case
for more general base states.

6.2. Normal mode analysis
While the resulting system of partial differential equations (6.2) is linear, an analytic
solution for arbitrary initial and boundary conditions is difficult. We therefore proceed
by performing a classical normal mode analysis (Drazin 1981), motivated by a
formal Fourier–Laplace transform analysis of an arbitrary initial value problem in
an unbounded domain. We adopt the normal mode ansatz,

(h1, u1, v1, η1)= (ĥ, û, v̂, η̂)eσ teikxx+ikyy, (6.5)

where (kx, ky) are the wavenumbers of the perturbation in the (x, y) directions,
respectively, σ is the growth rate of the perturbation, and the real part of the right-
hand side of (6.5) is assumed. For a temporal stability analysis the wavenumbers
(kx, ky) ∈ R2 are imposed and the growth rate σ = σ(kx, ky) ∈ C is determined. If
Re(σ ) < 0 for all wavenumbers, then the steady flow is linearly stable as an arbitrary
initial perturbation will decay exponentially quickly. However, if a wavenumber vector
(kx, ky) can be found for which Re(σ ) > 0, then the steady flow is linearly unstable
and the perturbation grows exponentially quickly. If Re(σ ) = 0 for all wavenumbers,
then the steady flow is neutrally stable and the initial perturbation neither grows
nor decays. The imaginary part of σ gives the phase speed of the perturbation. For
unstable modes, if Im(σ ) 6= 0 the instability is convective as an initial perturbation
propagates in time, whereas a perturbation with Im(σ ) = 0 is absolutely unstable as
growth remains localized at the point of initiation.

On invoking the normal mode ansatz the linear system of partial differential
equations is reduced to a linear system of algebraic equations,

σ ĥ+ ikxu0ĥ+ ikxû+ ikyv̂ = 0,

σ û+ ikxu0û+ ikxε cos ζ ĥ=−cos ζ(µhĥ+ µuû+ µηη̂),
σ v̂ + ikxu0v̂ + ikyε cos ζ ĥ=−sin ζ v̂/u0,

σ η̂ + ikx[1− (1− α)(1− 2η0)]u0η̂ + ikx[1− (1− α)(1− η0)]η0û

+ iky[1− (1− α)(1− η0)]η0v̂ − ikx(1− α)u0η0
2ĥ= 0.


(6.6)

The algebraic system can be cast in matrix form as an eigenvalue problem in which
the growth rate σ appears as the eigenvalue and the amplitudes of the normal modes
are obtained as the corresponding eigenvector,

Ax̂= σ x̂ with x̂= (ĥ, û, v̂, η̂)
T
, (6.7)

where the matrix A(kx, ky; u0, η0) is a function of the underlying steady flow solution
and the wavenumbers of the perturbation, and T denotes the transpose operation.
The components of the matrix A are given in the Appendix. The eigenvalues are
determined as the roots of the characteristic polynomial,

f (σ ; kx, ky, u0, η0)= det(σ I − A)= 0, (6.8)

where I denotes the identity. The characteristic polynomial can be found explicitly by
expanding the determinant, as given in the Appendix. The growth rate is the root of
the quartic polynomial f with largest real part, which we denote by σm.
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η0 u0 Fr uc

(a) 0.75 0.238 0.804 0.592
(b) 0.85 0.334 1.130 0.423
(c) 0.95 0.536 1.813 0.327
(d) 1.0 0.753 2.545 —

TABLE 2. The steady flow velocity, u0, Froude number, Fr , and critical flow velocity, uc,
for the steady interface heights η0 used in the linear stability analysis of bidisperse granular
flows on a slope inclined at an angle ζ = 29◦. Material parameters are given in table 1.
Contours of the growth rates obtained from a linear stability analysis of steady uniform
flows with these parameters are shown in figure 9.

6.3. Typical results

For fixed controlling parameters (table 1) and a specified inclination angle ζ , a
family of steady, fully developed solutions can be found by varying the interface
height η0. The steady velocity is then given by (4.14) and the range of inclination
angles at which the steady solutions exist is given by (4.16). Furthermore, varying
the inclination angle and interface height result in changes to the topology of the
characteristic surfaces, as discussed in § 4.4. Here we investigate the influence of
the inclination angle and interface height on the linear stability of the steady, fully
developed flow.

In figure 9 we show contours of the growth rate Re(σm) as a function of the
downstream and cross-stream wavenumbers (kx and ky, respectively) for an inclination
angle ζ = 29◦. Four different values of the interface height, η0, are shown, which
result in corresponding changes in the steady depth-averaged velocity, u0, the steady
Froude number, Fr = u0/

√
ε cos ζ , and the critical flow velocity for the steady flow, uc

defined by (4.22) (table 2). We recall that the steady flow is subcritical if Fr < 1 and
supercritical if Fr > 1, and the characteristic ray Q1 lies within the characteristic ray
cone Qs if u0 < uc and lies outside the ray cone if u0 > uc. Note that in figure 9(d)
we have taken an interface height η0 = 1.0 corresponding to a monodisperse flow
composed entirely of the small material.

Steady, fully developed bidisperse flows (shown in figure 9a–c) are linearly unstable
to perturbations with kx > 0 (the flows are neutrally stable for kx ≡ 0, ky > 0) with
the exception of a region of linear stability with kx > 0, ky > 0 for η0 = 0.95 (c). The
growth rate increases as the downslope wavenumber kx increases for fixed cross-stream
wavenumber for each of the steady flows, except for the flow (c) where a local
maxima in the growth rate occurs for a finite kx-wavenumber for ky > 0. Furthermore,
for parameter sets (a) and (b) the maximum growth rate for a fixed downstream
wavenumber kx > 0 occurs for ky = 0, indicating that purely downslope perturbations
are the most rapidly growing, while for the steady flow (c) the most unstable mode
occurs for kx > 0, ky > 0, indicating the most rapidly growing perturbations in this
case are three dimensional. From table 2 we note, for the flow (c), the steady flow
velocity exceeds the critical velocity, u0 > uc, which is in contrast to the flows (a)
and (b). By further varying the steady interface height we can show that the transition
from two-dimensional instability to three-dimensional instability occurs precisely when
u0 > uc. Therefore, the topology of the characteristic conoids determines the nature of
the instability of the steady, fully developed flow.
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FIGURE 9. Contours of the growth rate Re(σm) as a function of the wavenumbers in
the downstream, kx, and cross-stream, ky, directions: (a) η0 = 0.75 and (b) η0 = 0.85 are
bidisperse flows in which the most unstable mode is a purely downslope perturbation;
(c) η0 = 0.95 is a bidisperse flow in which the most unstable mode is a perturbation in both
the downslope and cross-slope directions; (d) η0 = 1.0 is a monodisperse flow. The shaded
region in (c) marks linearly stable wavenumbers whereas the shaded region in (d) corresponds
to neutrally stable wavenumbers. Parameters are given in table 2.

When parameters for a monodisperse flow are taken, by setting η0 = 1 (or η0 = 0),
the topology of the dispersion relation changes, as shown in figure 9(d). Here there is
a sharp separation (i.e. the surface is continuous but not smooth) between an unstable
region and a neutrally stable region. For monodisperse flows the depth-averaged
segregation equation (4.5) reduces identically to the equation for the conservation
of mass (4.2). This degeneracy leads to the appearance of a neutral mode in the linear
stability analysis.

The Froude number of the steady, fully developed flow can be varied by changing
the inclination angle or the concentration of large particles (4.14)–(4.15). By reducing
the Froude number, the influence of inertia on the flow dynamics relative to
gravitational forces is reduced. Figure 10 shows the maximum growth rate, for kx 6 20,
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FIGURE 10. The maximum growth rate of perturbations, max(σm) for kx 6 20, ky 6 20,
as a function of the steady flow Froude number, Fr . Four particle-size distributions are
considered, with η0 = 0.75, η0 = 0.85, η0 = 0.95, and η0 = 1, as indicated on the figure. In the
monodisperse limit η −→ 1, the linear instability of steady, fully developed flows are found
for Fr > 2/3, while flows are neutrally stable for Fr < 2/3. The dashed line marks the point
of transition at Fr = 2/3. In contrast, bidisperse flows are found to be linearly unstable for
Fr > 0. The Froude number is varied by changing the angle of inclination, ζ . The frictional
parameters of the particles are taken to be ζ S

1 = 20◦, ζ S
2 = 30◦, ζ L

1 = 27◦, ζ L
2 = 37◦, L = 0.5,

and we take ε = 0.1 and α = 0.

ky 6 20, as a function of Froude number, Fr , and interface height, η0, for steady,
fully developed flows. For bidisperse flows, 0 < η0 < 1, linear instability is found
for any non-zero Froude number, suggesting the instability is not solely due to
inertia. In contrast, for monodisperse flows, η0 = 0 and η0 = 1, there is a critical
Froude number at Fr = 2/3 separating linearly unstable steady flows (Fr > 2/3) from
neutrally stable steady flows (Fr < 2/3). This behaviour in the monodisperse limit is
consistent with the results of Forterre & Pouliquen (2003) and Forterre (2006) on the
spatial stability of fully developed monodisperse granular avalanches where instability
was found for steady flows with Fr > 2/3, while steady flows with Fr < 2/3 were
found to be linearly stable. In addition, the critical Froude number for instability of the
monodisperse granular avalanche (Fr = 2/3) coincides with that found for roll waves
on shallow liquid layers (see e.g. Whitham 1974; Needham & Merkin 1984).

To examine the role of inertia the linear stability analysis of the system has been
performed with a tuning parameter ν multiplying the inertial terms in the momentum
equations. For bidisperse flows, the instability persists for ν < 1 and the steady
flow remains linearly unstable in the limit ν −→ 0. The limit ν −→ 0 is the limit
considered by Pouliquen & Vallance (1999), albeit for a different base flow (so the
results are not directly comparable). This shows that while the effects of inertia are
included in the model they are not the root cause of the instability, which is driven
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by the same segregation-mobility feedback mechanism suggested by Pouliquen &
Vallance (1999).

The roll wave instability of steady uniform monodisperse flows is controlled by
inertia (Forterre & Pouliquen 2003; Forterre 2006). However, in contrast, the instability
of bidisperse flows is not controlled by inertia. Roll wave instability has been
observed in slow flows of non-Newtonian fluids (Balmforth, Bush & Craster 2005)
and multicomponent systems (Balmforth, Craster & Toniolo 2003).

6.4. High-wavenumber asymptotics
For the system of equations (4.2)–(4.5) to be well posed we must have Re(σm)

bounded above as kx→∞ (Joseph & Saut 1990). We analyse the behaviour of the
growth rates for large wavenumbers by performing an asymptotic analysis of the
characteristic polynomial for kx� 1.

To analyse the character of the dispersion relation for large kx wavenumber we
introduce an ordering parameter δ � 1 and take kx = 1/δ for a fixed ky > 0. We
expand the growth rate in an asymptotic series in δ, taking

σ = δp (σ0 + σ1δ + · · · ) , (6.9)

where the exponent, p, and the coefficients (σ0, σ1, . . . ) are to be determined. On
substitution into the characteristic polynomial (6.8) we find that the distinguished limit,
for which there is a balance at each order of δ, demands p=−1.

Expanding the characteristic polynomial for δ� 1 we find, at order δ−1,

f0(σ0)= σ0
4 + [i(4− (1− α)(1− 2η0))u0]σ0

3

+ [ε cos ζ − 3(2− (1− α)(1− 2η0))u0
2]σ0

2

+ [i(2− (1− α)(1− 2η0))u0ε cos ζ − i(4− 3(1− α)(1− 2η0))u0
3]σ0

+ [(1− (1− α)(1− 2η0))u0
2(u0

2 − ε cos ζ )] = 0. (6.10)

The roots of this polynomial, which we denote as σ (0)0 , σ (1)0 , σ (+)0 and σ (−)0 , are found
explicitly as

σ
(0)
0 =−ic(0) with c(0) = u0,

σ
(1)
0 =−ic(1) with c(1) = (1− (1− α)(1− 2η0))u0,

σ
(+)
0 =−ic(+) with c(+) = u0 +

√
ε cos ζ ,

σ
(−)
0 =−ic(−) with c(−) = u0 −

√
ε cos ζ ,

 (6.11)

where we identify c(0) as the depth-averaged velocity of the steady solution, c(1)

as the downslope velocity of the interface separating the constituent particle classes,
and c(+) and c(−) are the downstream and upstream speeds, respectively, of gravity
waves on the surface of the steadily flowing layer. (Note here and in the following
analysis we have adopted notation which emphasizes the connection between the
growth rates and wave speeds.) Thus, the eigenvalues at high kx wavenumber are
purely imaginary at leading order, indicating that the growth rate is bounded as
kx →∞ and thus the system of equations is well posed. In addition, although the
phase velocity of the perturbation is unbounded as kx →∞, the group velocity is
bounded. Indeed, we note that the resulting phase speeds of the high-wavenumber
perturbations are the characteristic velocities (in the downslope direction) of the
linearized system of equation (6.2) (as given by (4.21)). Therefore, to leading order,
the high-kx-wavenumber perturbations are advected with the characteristic velocities.
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At order 1 we obtain a linear equation for σ1 of the form,

(a3σ0
3 + a2σ0

2 + a1σ0 + a0)σ1 = b3σ0
3 + b2σ0

2 + b1σ0 + b0 (6.12)

where the coefficients ai(u0, η0) and bi(u0, η0) are given in the Appendix. On
substituting the eigenvalues found at leading order, (6.11), we find

σ
(0)
1 =−sin ζ/u0,

σ
(1)
1 =−

(1− α)(1− η0)η0(1− (1− α)(1− 2η0))u0(µ
L
0 − µS

0) cos ζ

ε cos ζ [((1− α)(1− 2η0)Fr)
2−1] ,

σ
(+)
1 =−

(µL
u(1− η0)+ µS

uη0)ε cos ζ + (µL
h(1− η0)+ µS

hη0)
√
ε cos ζ

2ε

− (1− α)(1− η0)η0(µ
L
0 − µS

0)
√
ε cos ζ (Fr + 1)

2ε[(1− α)(1− 2η0)Fr + 1] ,

σ
(−)
1 =−

(µL
u(1− η0)+ µS

uη0)ε cos ζ − (µL
h(1− η0)+ µS

hη0)
√
ε cos ζ

2ε

+ (1− α)(1− η0)η0(µ
L
0 − µS

0)
√
ε cos ζ (Fr − 1)

2ε[(1− α)(1− 2η0)Fr − 1] ,



(6.13)

with the growth rate at high kx wavenumber given by the maximum of these
eigenvalues. Here σ (0)1 is obtained by substituting σ0 = σ (0)0 in (6.12) and similarly for
the remaining eigenvalues at order one. It is clear that σ (1)1 > 0 if |(1−α)(1−2η0)|Fr =
u0/uc < 1 (for µL

0 > µ
S
0), so we have linear instability at high kx wavenumber if the

flow velocity is less than the critical velocity (4.22). The phase speed for this unstable
mode, given by σ

(1)
0 , is such that the group velocity of a wave packet coincides

with the velocity of the interface. In addition, it is possible to have σ
(+)
1 > 0 if

(1 − α)(1 − 2η0)Fr < −1, which can occur for supercritical flows (Fr > 1) with
η0 > 1/2 when u0/uc > 1. The phase speed of this unstable mode, given by σ

(+)
0 , is

such that the group velocity is the velocity of surface gravity waves. The remaining
eigenvalues, σ (0)1 and σ

(−)
1 , are negative for the material parameters we employ. We

note that the leading-order growth rates at high kx wavenumber, σ (0)1 , σ (1)1 , σ (+)1 and
σ
(−)
1 , are independent of the cross-slope wavenumber ky.
On taking a monodisperse limit (i.e. either η0 −→ 0 or η0 −→ 1) of the growth rates

(6.13) we find σ (1)1 −→ 0 and

σ
(±)
1 −→−

µN
u ε cos ζ ± µN

h

√
ε cos ζ

2ε
, (6.14)

with N = L for η0 −→ 0 and N = S for η0 −→ 1. With the empirical form for the
friction coefficient (2.6) (Pouliquen 1999a) and the partial derivatives (6.4), (6.14) can
be written as

σ
(±)
1 −→−

(tan ζ − tan ζN
1 )

2ε
γ

Fr

(
1
Fr
∓ 3

2

)
, (6.15)

where γ > 0 and the Froude number of the steady flow Fr = u0/
√
ε cos ζ . Therefore,

in the monodisperse limit the steady flow is linearly unstable (i.e. the growth rate
is positive) at high kx wavenumber for Fr > 2/3. In contrast, high-kx-wavenumber
perturbations to the steady flow are neutrally stable when Fr < 2/3. Furthermore,
this stability condition is also obtained from numerical solution of the full dispersion
relation in the monodisperse limit, as shown in figure 10. Note we do not find
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linear stability for Fr < 2/3, as found for monodisperse roll waves by Forterre &
Pouliquen (2003) and Forterre (2006), due to the neutral mode, σ (1)1 , which occurs in
the monodisperse limit as the large particle transport equation (4.5) reduces identically
to the equation for the conservation of mass (4.2).

The high-kx-wavenumber asymptotic expansion of the growth rates (6.9) is not
appropriate when u0 −→ uc = √ε cos ζ/|(1 − α)(1 − 2η0)|, where the leading-order
dispersion relation at O(1/δ) is

f0(σ0)=
[
σ0 + i

√
ε cos ζ

|(1− α)(1− 2η0)|
] [
σ0 + i

√
ε cos ζ

(
1

|(1− α)(1− 2η0)| − 1
)]

×
[
σ0 + i

√
ε cos ζ

(
1

|(1− α)(1− 2η0)| + 1
)]

×
[
σ0 + i

√
ε cos ζ

(
1

|(1− α)(1− 2η0)| −
(1− α)(1− 2η0)

|(1− α)(1− 2η0)|
)]

, (6.16)

and the roots are

σ
(0)
0 =−

i
√
ε cos ζ

|(1− α)(1− 2η0)| ,

σ
(−)
0 =−i

√
ε cos ζ

(
1

|(1− α)(1− 2η0)| − 1
)
,

σ
(+)
0 =−i

√
ε cos ζ

(
1

|(1− α)(1− 2η0)| + 1
)
,


(6.17)

(note that σ (−)0 occurs with multiplicity 2 if (1 − α)(1 − 2η0) > 0 and σ
(+)
0 occurs

with multiplicity 2 if (1 − α)(1 − 2η0) < 0). As there are only three distinct roots, the
asymptotic expansion in the limit u0 −→ uc is singular and an expansion of the roots
of the form

σ = 1
δ
(σ0 + σ1δ

1/2 + σ2δ + · · · ) for δ = 1/kx� 1, (6.18)

is required. On substitution of the series (6.18) into the dispersion relation, we find

σ
(0)
1 ≡ 0, σ

(0)
2 =−

sin ζ |(1− α)(1− 2η0)|√
ε cos ζ

, (6.19a)

and, if (1− α)(1− 2η0) > 0,

σ
(−)
1 =±

(1+ i)
2

[
(1− (1− α)(1− 2η0))

1− 2η0
(1− η0)η0µη cos ζ

]1/2

,

σ
(+)
1 ≡ 0,

σ
(+)
2 =−

µh cos ζ

2
√
ε cos ζ

− µu cos ζ
2

− η0µη cos ζ

4
√
ε cos ζ

×
[
(1− 2η0)(1− (1− α)(1− η0))− η0

(1− 2η0)

]
,


(6.19b)
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while, if (1− α)(1− 2η0) < 0,

σ
(−)
1 ≡ 0,

σ
(−)
2 =

µh cos ζ

2
√
ε cos ζ

− µu cos ζ
2

+ η0µη cos ζ

4
√
ε cos ζ

×
[
(1− 2η0)(1− (1− α)(1− η0))− η0

(1− 2η0)

]
,

σ
(+)
1 =±

(1+ i)
2

[
(1− (1− α)(1− 2η0))

1− 2η0
(1− η0)η0µη cos ζ

]1/2

.


(6.19c)

Therefore, if u0 −→ uc = √ε cos ζ/|(1 − α)(1 − 2η0)| the perturbation grows in time
and the high-kx-wavenumber growth rate

σ ∼ 1
2

[
(1− (1− α)(1− 2η0))

1− 2η0
(1− η0)η0µη cos ζ

]1/2

kx
1/2 for kx� 1. (6.20)

The growth rate increases with increasing downslope wavenumber, indicating that
small wavelength components of a perturbation are amplified more rapidly and a
steady flow with u0 = uc is Hadamard unstable (Joseph & Saut 1990; Goddard
2003). Therefore, if parameters are taken such that u0 = uc, then the system of
equations (4.2)–(4.5) is ill-posed.

The high-kx-wavenumber asymptotics show the system of equations are linearly
unstable at high kx wavenumber. For parameter choices such that u0 6= uc the
growth rate of the perturbations is bounded above as kx −→∞ so the system of
equations (4.2)–(4.5) is well-posed (the system is regular in the language of Joseph
& Saut (1990)), although arbitrarily small-wavelength perturbations to the steady flow
grow exponentially rapidly, i.e. there is no cut-off to instability for small wavelength
perturbations. We note that similar stability characteristics are found for a shallow
layer of fluid on an incline, with high wavenumber modes stabilized through the
inclusion of Chezy frictional resistance (Whitham 1974) and viscous dissipation
(Needham & Merkin 1984). Furthermore, roll waves on a monodisperse, shallow
granular layer released on an inclined plane have been observed and predicted from
a linear stability analysis of a shallow-layer model of granular avalanches (Forterre
& Pouliquen 2003). Here the high-wavenumber modes remain linearly unstable.
However, the high-wavenumber instability can be suppressed by the inclusion of
(phenomenological) viscous dissipation (Forterre 2006). It is possible that the addition
of rheological terms in the equations for the conservation of momentum (4.3) and (4.4)
will stabilize the small-wavelength modes.

In contrast to the linear stability of viscous fluids on an incline (Needham & Merkin
1984) or monodisperse granular avalanches (Forterre & Pouliquen 2003), our model of
bidisperse granular avalanches is Hadamard unstable (Joseph & Saut 1990; Goddard
2003) on a curve in parameter space where u0 ≡ uc, with a growth rate σ ∼ kx

1/2

for kx� 1. Thus, arbitrarily small-wavelength perturbations grow exponentially rapidly
and the system of equations (4.2)–(4.5) is ill-posed in these regions of parameter space.
The numerical solutions suggest that there are always points in the flow where the
characteristics coincide and ill-posedness manifests itself by grid-dependent results.

7. Discussion and conclusions
Geophysical granular mass flows have polydisperse particle distributions and the

different properties of the grains in the assemblage can have a pronounced effect
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on the dynamics of the flows. Mathematical models of geophysical granular flows,
which typically adopt a shallow-layer approach, currently do not capture the effects of
the evolving particle distributions. Here, a first attempt has been made to include
a description of particle-size segregation into a depth-averaged model of dense
granular avalanches. Our model builds on previous theoretical models of particle-size
segregation by coupling a depth-averaged description of the preferential transport of
large particles to a shallow-layer model of a granular avalanche. By allowing the bulk
friction coefficient of the avalanche to vary as a function of the local concentration
of small particles, segregation-mobility feedback effects on the avalanche dynamics are
incorporated into the avalanche model.

Numerical solutions of the governing equations we propose demonstrate that the
mathematical model is able to describe the formation of a large-rich and relatively less-
mobile flow front, the subsequent instability of the front and the formation of fingers
bounded by large-rich levees. Furthermore, the complicated evolution of the fingers
once they are formed, including merging of neighbouring fingers, cannibalization of
small fingers by larger fingers, and splitting of the finger tips, which are observed
in analogue laboratory experiments, is reproduced in the numerical computations.
However, the numerical solutions are unable to predict the width of the fingers as the
computations remain grid dependent. In § 6 we show via a linear stability analysis of
a steady uniform flow that the grid-dependent numerical solutions reflect an underlying
pathology of the system of governing equations. In particular, for specific values of
the parameters the growth rate of the instability tends to infinity with increasing
wavenumber, implying that the system is Hadamard unstable and ill-posed (Joseph
& Saut 1990; Goddard 2003). Therefore, while our model is able to capture several
features of the formation and evolution of fingers, there are essential physical effects
which are not included in the system of equations.

The short wavelength instability found in the model of bidisperse granular flows
is also seen in models of monodisperse avalanches (Forterre & Pouliquen 2003),
although the growth rates of high-wavenumber perturbations in the monodisperse
avalanche model are bounded above (Forterre & Pouliquen 2003), so the monodisperse
model is well posed. In order to stabilize short wavelengths in the monodisperse
model, Forterre (2006) introduces a phenomenological viscous dissipation, based on an
empirical granular rheology (GDR MiDi 2004), that provides a physical mechanism to
set the wavelength of instabilities. In the bidisperse model we present, the wavelength
of fingers in the numerical simulations is selected by the numerical viscosity,
which changes with grid resolution. This suggests that a regularized model may be
constructed by including a rheology for bidisperse granular avalanches (for example
Rognon et al. 2007). Preliminary calculations (not shown here) suggest the inclusion
of viscous terms in the system of equations (4.2)–(4.5) is sufficient to regularize the
model (i.e. to obtain bounded growth rates), but not to cut-off the growth at short
wavelengths. To obtain cut-off additional diffusive terms are required in the large
particle transport equation. Further investigation is required to determine the physically
appropriate form of both the depth-averaged rheology (which is non-unique) and also
the correct form of diffusive terms in the depth-averaged description of particle-size
segregation.
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Appendix. Details of the linear stability analysis
The components of the 4 × 4 matrix A appearing in the eigenvalue–eigenvector

problem of the linear stability analysis (6.7) are

A11 =−ikxu0, A12 =−ikx, A13 =−iky, A14 = 0, (A 1a)

A21 =−ikxε cos ζ − cos ζ [(µL
0 − µS

0)η0 + µL
h(1− η0)+ µS

hη0], (A 1b)

A22 =−ikxu0 − cos ζ [µL
u(1− η0)+ µS

uη0], A23 = 0, (A 1c)

A24 = cos ζ(µL
0 − µS

0), (A 1d)

A31 =−ikyε cos ζ, A32 = 0, A33 =−ikxu0 − sin ζ/u0, A34 = 0, (A 1e)

A41 = ikx(1− α)u0η0
2, A42 =−ikx[1− (1− α)(1− η0)]η0, (A 1f )

A43 =−iky[1− (1− α)(1− η0)]η0, A44 =−ikx[1− (1− α)(1− 2η0)]u0. (A 1g)

The corresponding characteristic polynomial, f (σ ) = det(σ I − A), is a quartic
polynomial which we write as f (σ )= f4σ

4+ f3σ
3+ f2σ

2+ f1σ+ f0 where the coefficients
fi ∈ C are functions of the steady solution and the wavenumbers kx and ky. The
coefficients which define the characteristic polynomial are

f4 = 1, (A 2a)
f3 = ikx[4− (1− α)(1− 2η0)]u0 + sin ζ/u0 + µu cos ζ, (A 2b)
f2 = kx

2ε cos ζ − 3kx
2[2− (1− α)(1− 2η0)]u0

2 − ikxµh cos ζ
+ ikx[3− (1− α)(1− 2η0)]u0µu cos ζ − ikx[1− (1− α)(1− η0)]η0µη cos ζ

+ ikx[3− (1− α)(1− 2η0)] sin ζ + ky
2ε cos ζ + µu cos ζ sin ζ/u0, (A 2c)

f1 = ikx
3[2− (1− α)(1− 2η0))u0ε cos ζ − ikx

3[4− 3(1− α)(1− 2η0)]u0
3

+ kx
2[2− (1− α)(1− 2η0)]u0µh cos ζ − kx

2[3− 2(1− α)(1− 2η0)]u0
2µu cos ζ

+ kx
2[2α + 3(1− α)η0]η0u0µη cos ζ − kx

2(3− 2(1− α)(1− 2η0))u0 sin ζ

+ kx
2ε cos ζ sin ζ/u0 − ikxµh cos ζ sin ζ/u0

+ ikx[2− (1− α)(1− 2η0)]µu cos ζ sin ζ
− ikx[1− (1− α)(1− η0)]η0µη cos ζ sin ζ/u0

+ ikxky
2[2− (1− α)(1− 2η)]u0ε cos ζ + ky

2µu cos ζε cos ζ, (A 2d)

f0 = kx
4[1− (1− α)(1− 2η0)](u0

2 − ε cos ζ )u0
2

+ ikx
3[1− (1− α)(1− 2η0)]u0

2(µh − u0µu + η0µη) cos ζ

− ikx
3[1− (1− α)(1− 2η0)](u0

2 − ε cos ζ ) sin ζ
+ kx

2[1− (1− α)(1− 2η0)](µh − u0µu + η0µη) cos ζ sin ζ
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− kx
2ky

2[1− (1− α)(1− 2η0)]u0
2ε cos ζ

+ ikxky
2[1− (1− α)(1− 2η0)]u0µu cos ζε cos ζ. (A 2e)

The coefficients in the linear equation (6.12) determining σ1 are

a3 = 4, (A 3a)

a2 = 3i[4− (1− α)(1− 2η0)]u0, (A 3b)

a1 = 2ε cos ζ − 6[2− (1− α)(1− 2η0)]u0
2, (A 3c)

a0 = i[2− (1− α)(1− 2η0)]ε cos ζu0 − i[4− 3(1− α)(1− 2η0)]u0
3, (A 3d)

b3 = [µL
u(1− η0)+ µS

uη0] cos ζ + sin ζ/u0, (A 3e)

b2 = i[3− (1− α)(1− 2η0)][µL
u(1− η0)+ µS

uη0] cos ζu0 + i[3− (1− α)(1− 2η0)] sin ζ

+ i(1− α)(1− η0)η0(µ
L
0 − µS

0) cos ζ − i[µL
h(1− η0)+ µS

hη0] cos ζ, (A 3f )

b1 =−[3− 2(1− α)(1− 2η0)][µL
u(1− η0)+ µS

uη0] cos ζu0
2

+ (1− α)(1− η0)η0(µ
L
0 − µS

0) cos ζu0 − [3− 2(1− α)(1− 2η0)] sin ζu0

+ [2− (1− α)(1− 2η0)][µL
h(1− η0)+ µS

hη0] cos ζu0 + ε cos ζ sin ζ/u0, (A 3g)

b0 =−i[1− (1− α)(1− 2η0)]{[µL
u(1− η0)+ µS

uη0] cos ζu0
3 + sin ζu0

2

− [µL
h(1− η0)+ µS

hη0] cos ζu0
2 − ε cos ζ sin ζ }. (A 3h)
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